Regularized collocation for Spherical harmonics Gravitational Field Modeling
نویسندگان
چکیده
Motivated by the problem of satellite gravity gradiometry, which is the reconstruction of the Earth gravity potential from the satellite data provided in the form of the second-order partial derivatives of the gravity potential at a satellite altitude, we discuss a special regularization technique for solving this severely ill-posed problem in a spherical framework. We are especially interested in the regularized collocation method. As a core ingredient we present an a posteriori parameter choice rule, namely the weighted discrepancy principle, and proves its order optimality. Finally, we illustrate our theoretical findings by numerical results for the computation of the Fourier coefficients of the gravitational potential directly from the noisy synthetic data.
منابع مشابه
Spline Representations of Functions on a Sphere for Geopotential Modeling
Three types of spherical splines are presented as developed in the recent literature on constructive approximation, with a particular view towards global (and local) geopotential modeling. These are the tensor-product splines formed from polynomial and trigonometric B-splines, the spherical splines constructed from radial basis functions, and the spherical splines based on homogeneous Bernstein...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملWavenumber estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions
We study the coercivity properties and the norm dependence on the wavenumber k of certain regularized combined field boundary integral operators that we recently introduced for the solution of two and three-dimensional acoustic scattering problems with Neumann boundary conditions. We show that in the case of circular and spherical boundaries, our regularized combined field boundary integral ope...
متن کاملFast Spectral Collocation Method for Surface Integral Equations of Potential Problems in a Spheroid.
This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid. The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid. With the pr...
متن کاملDevelopment of 3D T-Trefftz Voronoi Cell Finite Elements with/without Spherical Voids &/or Elastic/Rigid Inclusions for Micromechanical Modeling of Heterogeneous Materials
In this paper, three-dimensionalT-Trefftz Voronoi Cell Finite Elements (VCFEM-TTs) are developed for micromechanical modeling of heterogeneous materials. Several types of VCFEMs are developed, depending on the types of heterogeneity in each element. Each VCFEM can include alternatively a spherical void, a spherical elastic inclusion, a spherical rigid inclusion, or no voids/inclusions at all.In...
متن کامل